Another Simple Algorithm for Edge-Coloring Bipartite Graphs
نویسنده
چکیده
A new edge-coloring algorithm for bipartite graphs is presented. This algorithm, based on the framework of the O(m log d + (m/d) log(m/d) log d) algorithm by Makino–Takabatake–Fujishige and the O(m log m) one by Alon, finds an optimal edge-coloring of a bipartite graph with m edges and maximum degree d in O(m log d + (m/d) log(m/d)) time. This algorithm does not require elaborate data structures, which the best known O(m log d) algorithm due to Cole–Ost–Schirra depends on. key words: bipartite matching, edge-coloring, graph algorithms, combinatorial optimization
منابع مشابه
Edge Coloring Bipartite Graphs Eeciently
The chromatic index of a bipartite graph equals the maximal degree of its vertices. The straightforward way to compute the corresponding edge coloring using colors, requires O((2 n 3=2) time. We will show that a simple divide & conquer algorithm only requires O((3=2 n 3=2) time. This algorithm uses an algorithm for perfect k-matching in regular bipartite graphs as a sub-routine. We will show th...
متن کاملBounded Max-colorings of Graphs
In a bounded max-coloring of a vertex/edge weighted graph, each color class is of cardinality at most b and of weight equal to the weight of the heaviest vertex/edge in this class. The bounded max-vertex/edge-coloring problems ask for such a coloring minimizing the sum of all color classes’ weights. In this paper we present complexity results and approximation algorithms for those problems on g...
متن کاملOn the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs
For a coloring $c$ of a graph $G$, the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively $sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$, where the summations are taken over all edges $abin E(G)$. The edge-difference chromatic sum, denoted by $sum D(G)$, and the edge-sum chromatic sum, denoted by $sum S(G)$, a...
متن کاملEdge-coloring Vertex-weightings of Graphs
Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...
متن کاملAnalysis of Approximate Algorithms for Constrained and Unconstrained Edge-coloring of Bipartite Graphs Applied Research Bellcore
The problem of edge coloring a bipartite graph is to color the edges so that adjacent edges receive di erent colors An optimal algorithm uses the minimum number of colors to color the edges We consider several approximation algorithms for edge coloring bipartite graphs and show tight bounds on the number of colors they use in the worst case We also brie y consider the constrained edge coloring ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 88-A شماره
صفحات -
تاریخ انتشار 2005